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An approximate solution is obtained for the problem of mass and heat transfer from a 
moving rigid spherical particle at small finite values of P&let and Reynolds number. 

Th,e case of a first-order chemical reaction of arbitrary speed at the surface of the par- 
ticle is considered. The problem is solved by the method of matched asymptotic expan- 

sions with respect to P&let number. The concentration and temperature fields are con- 

structed, and the complete flux of material and heat at the surface of the particle is found. 

The basic equation in the problem is the equation of convective diffusion or heat con- 
duction, in which the velocity field of the viscous flow is assumed known from the solu- 

tion of the corresponding hydrodynamic problem. The dispersion of fine aerosol particles 

due to Brownian motion is also governed by an analogous equation. 
The diffusive flux on a spherical particle under conditions of Stokes flow, that is for 

the Reynolds number,R j 0, was calculated in the approximation of a diffusion boundary 
layer in [l]. In paper @] the Stokes distribution of velocity was replaced by the solution 

obtained in p] by the method of matched asymptotic expansions, and in the approxima- 
tion of a diffusion boundary layer an analytic expression was found for the diffusive flux 

on a sphere at finite Reynolds number, which agrees with the results of [1] as R - 0 . 
Comparison of the results @] with a numerical solution of the problem [4] shows that 
the analytical solution agrees well with the exact solution up to R z 10. 

The approximation of a diffusion boundary layer limits the region of applicability of 

the results [l, 2, 43 to P&let mrmbers P > 1. Attempts to solve the problem for small 

finite P&let numbers have been undertaken repeatedly. However only in [5] has a solu- 
tion been obtained by the method of matched asymptotic expansions with respect to 
P&let number for Stokes flow. .That paper also gives references to earlier works, the 

results of which proved to be erroneous. By virtue of the assumptions adopted in [S] the 
results are valid in the regime of pure diffusion for Reynolds number R - 0. 
In the present work the problem of diffusion to a spherical particle at finite P&let 

number is extended to the case of finite Reynolds number and chemical reaction at the 

surface of the particle. Extension of the range of Reynolds number is achieved by using 
for the velocity field the expression in p], giving the flow past a spherical particle at 

finite,R’.:.An attempt at solving the problem in the special case of infinitely high speed 
of chemical reaction is given in P-J, but as a result of errors committed by the author in 
matching, the results he obtained are incorrect. 

1. Strtrment of problem, Method of #olutlon, We consider thesteady 
process of diffusion in a stream of viscous incompressible fluid flowing past a rigid spher- 
ical particle of radius a. Far from the sphere the speed of the flow is u, and the concen- 

tration of the diffusing component is ca. 
In the vicinity of the sphere the speed of the stream and the concentration of diffusing 

material vary, the speed because of the perturbing action of the sphere and the concen- 
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tration because of absorption of material at its surface. The velocity field is assumed 
known from the solution of the corresponding hydrodynamic problem. The object of the 
present work is the determination of the concentration field and of its most important 
feature, the flux of matter at the sphere. 

We write the equation of convective diffusion appropriate to the problem under con- 

sideration, using dimensionless variables and the system 

u .i 

r=l 
IJ 

CY 

of coordinates shown in Fig. 1 

47 

p+ (p = co9 e) (1.1) 

Here r is the dimensionless radial coordinate referred 

Fig. 1 to the radius of the particle, 8 the angular coordinate, 

A the axisymmetric spherical Laplace operator, D the 
diffusion coefficient, $ the dimensionless stream function, and c the concentration of 
diffusing material. The boundary conditions have the form: 

at infinity 
r--+00, E-+0 (1.2) 

and on the surface of the sphere 

r = 1, 6’E / dr = k (E - I), k = ak,D-’ (1.3) 

where k, is the constant speed of chemical reaction on the surface of the particle. 

In writing the condition (1.3) it is assumed that the absorption of material by the sphere 

depends on a surface chemical reaction of first order. For k -) CO the condition (1.3) 

takes the form E (1) = 0 , and corresponds to the diffusion regime for absorption of mater- 
ial, the deposition of aerosol particles, and also heat transfer from the stream to a sphere 
whose temperature ?I is maintained constant. (In the last case D stands for the coeffici- 

ent of thermal conductivity, and E for the ratio (T - To) x (T, - To)-‘; where T is the 
temperature of the stream and To the temperature at infinity). 

If the stream function $ = 4~ (r, p) is known, Eq. (1.1) and the conditions (1.2) and 
(1.3) completely determine the distribution of concentration in the stream. Exact solu- 

tion of the problem (l.l)-(1.3) is impossible, even if the velocity distribution for viscous 
flow past the sphere is taken as the simplest known approximate solution, the Stokes solu- 

tion. Below an approximate analytical solution of (l.l)-(1.3) will be found by the me- 
thod of matched asymptotic expansions with respect to the P&let number P in the inner 
(1 < r < P-r)and outer (P-1 < r < m) flow regions. The basic features of the method, 
as applied to a variety of problems in gas dynamics and hydrodynamics, are described in 
fl]. For the velocity distribution in the inner and outer regions we use the solution 

obtained in p] by the method of matched asymptotic expansions (see also [8]). 
We seek inner and outer expansions respectively in the form 

E* = 2 Qn (P) L(r, cl> (1.4) 
cu n=o 

E* = 2 C-0) (P) E(n) (P, c”) (1.5) 
n=o 
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Here it is assumed with respect tothe functions a,, (P) and a(n) (P) simply that 

%+1(P) -0 

a,(P) ’ 
a@+l) (PI _ 0 as P-* 0 
a@) (P) 

Terms of the expansion (1.4) are determined successively as solutions of Eq, (1.1) and 

boundary condition (1.3). Here the velocity field in (1.1) is given by the three-term 
inner expansion for the stream function p] 

9* = -+- (r..- l)~(l-~~)[(l+~P+~~P’l~P)(2+~)- 
-+P(2+++~)p]+o(P~)(s=~) (1.6) 

Here 5’ is the Schmidt number, and v the coefficient of kinematic viscosity. The outer 

expansion (1.5) is determined from Eq. (1.1) with the stream function J, given by the 

two-term outer expansion p], and the condition (1.2). Introducing the contracted radial 
coordinate p = rP and $* I= $Pp, we rewrite (1.1) and (1.2) in the form 

A*.$* = + a,(:;* ;;I ) p-0, 5*-O 

** = -&‘(I - P) - $SP(I$:p)[l-erp(-%~)I+O(P’) (1.7) 

Here A* is the axisymmetric spherical baplace operator obtained from A by replacing 

r with p. The arbitrary constants arising in the solution of (1.1). (1.3) and (1.6) and of 

(1.7) are determined by matching the inner and outer expansions (1.4) and (1.5). 

2. 2~0th approximation. Construction of the solution begins with determina- 
tion of the zeroth term of the outer expansion (1.5). In this case the problem (1.7) is 

obviously satisfied by the solution Fp) = 0 (2.9 

We now find the zeroth term of the inner expansion (1.4). From (1.1). (1.3) and (1.6) 
we have for P = 0 

AE, = 0, r = 1, a&, / ar = k (E, - 1) 

The general solution of the problem (2.2) can be given in the form 

(2i2) 

Eo = (2.3) 
m-0 ’ 

The expression (2.3) contains arbitrary constants a,, that should be determined by match- 

ing (2.3) with (2.1). To match, the outer expansion should be expanded in powers of,p. 
Then the constants are determined by requiring agreement in the behavior of terms in 

that series as p + 0 and of terms in the expansion (2.3) as r L-+ 00. The matching is 
trivial for the zeroth expansion; we obtain a,, = 0 (n = 0, 1, . ..j. Consequently 

E. = qr+ (2i4) 

8. Firrt rpproximrtlon. We first determine in explicit form the coefficient 
of a(l) (P) in outer expansion. For this purpose we transform the solution (2.4) to outer 
variables. Then it follows i?om (2.4) that a(l) = P, so that the first approximation 

for the outer expansion is to be sought in the form 

E*(l) = pow (3.1) 

Substituting (3.1) into (1.7) and retaining terms of order .P.we obtain 
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AECU = 0, A = A* - p + -- + -& , 

p -9 00,‘ f;c” 3 0 

The general solution of tbe problem (3.2) has the form 

(3.2) 

Here the K,+t lt are MacDonald functions. The constants A ,, are to be determined by 
matching, which in this case consists in comparing the behavior of the function (3.1) 
for p -+ 0 and the function (2.4) for r --f co. It is easy to show that A 0 = (ire-r and 
A .=o (r&=1,2 , . . .). Consequently 

E.(l) = qp+exp P/,p (CL - f)l (3.4) 
We find the first approximation for the inner expansion. For this we convert the expres- 
sion for the function c*(l) to tbe inner variable r and represent it as a series in P. Then 
from (3.1) and (3.4) we find that a, (P) = P. Consequently it folfows that the first 
approximation for the inner expansion is to be sought in the form 

E*r = E0 + PC, (3.5) 

Substituting (3.5) into (1.1) and (1.3), using (1.6). and keeping terms of order P,. we 
obtain the equation and boundary conditions for & 

r = 1, ai, / 6~ = kE, (3.7) 

The solution of Eq. (3.6) can be represented in the form 

(3.8) 

The boundary conditions (3.7) permit linear relationships to be established between the 
constants a,and b, (1 - k) a, + %P & 4 3) = (2 + Is) b, 

@--&)a, ==@+1+W, (fx=0,2,3,...) (3.9) 
To obtain explicit expressions for the coefficients in (3.8) we perform the matching of 
the expression (3.5) as P -+ M) and (3.1) as p -+ 0, Using (3.4). (3.8) and (3.9). we 
obtain 

=o = - ilsq, b, = ‘/%q2, a, = 0, b, = s/8 (k + 3) .(k + 2)“‘q 

a, = b, = 0 (a= 2,3,...) 

Consequently 

4. Sraand rpptoxltmrtton for out6r expln8ion. The two-term inner 
expansion &I in outer variables has, on tbe basis of (3. S), (2.4) and (3. lo), the form 
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E *1 = P $-Pq --&(% - 3p) + * * . (4.1) 

From (4.1) it follows that a(*) (P) = Pa. Substituting the three-term outer expansion 

g*(a) = @O’ + p~cl) + P?E@), 

where c(O) and t(1) are given by Eqs. (2.1) and (3.4). &to (1. ‘7). we obtain for E(*) 

Aft*)= pE(2g+$_ +qex*(pqLqL) - 

-+$(I +$-+xp(p+) (4.2) 

P-,00, p --_, 0 

To solve the problem (4.2) we make the substitution 

E(“) (65 PI = exp (‘I& E’Q) (P, IL) 

As a result, Eq. (4.2) is transformed into the nonhomogeneous Helmholtz equation, The 
right-hand side of this equation is expanded in. a series of Legendre polynomials P, (p) , 
and its solution is also sought as a series in P, (p) .' After some calculation we obtain 

m 

5’8’ (P, IL) = QP-"'exP (+y x ?n (PI pn (PI 
n-0 

qn (PI = Kn+v* (+) ‘s” In+% (+) L, (PI 0 - In+% (+) J ~n+v* (+) LTI (PI dP 
P 

JL (PI = - + Sp”” exp (-+)[(l++)6~o-$~,1J+ (4.3) 

3 (2n + 
+ 2 

1) Jt’l,~j sp-%xp (_p “;.‘)[(I +p* -.s+n)L+*,,(&)- 

S-l I 
-PT 

P 
nPf* x 

( )I 

8 
I 

0, n#i 

a’ i, n=i 

Here In+llt is the modified Bessel function. 
The constants C, are determined by matching the solution ,$,i(s> (p, p) with (4.1). 

For this it is necessary to expand the function g(s) (p, p) in series for small p. In 

writing the series we use the expansion of the function q,, (p) in series with respect to 
p,which has the form 

a 

tl, (PI = LwGl+*/, (4g) + P", c 4&i (p)+ 0 (P"9 
i=o 

f (4 
Ro(P) =p 

In P _-T+q+$_L+++ 

RI(P) = - 
-1 

++&++&-&)PlnP 

(4.4) 

R2 (P) = l/24 - %a 8-l 

f (a = - l/J2 + l/d + 1/4 (S + 1)2 (S - 2) In (1 + S-l) - ‘/,lnS 
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Here the A, are new constants uniquely related tothe c,, and y = 0.577215. . . is Euler’s 
constant. The series (4.4) can be extended indefinitely, but the terms given above suf- 
fice for carrying out the matching. After matching E*(si (p, /.k) with g*r (r, p) we 

find the constants A,, 

A ,, = n-‘h [ l/sq - f(s)], A,, = 0 (n > 1) (4.5) 
With these values of A, the outer asymptotic expansion matches with the inner with 

accuracy up to terms of order P ‘. The explicit expression for the asymptotics of the 

function c(a) (p, ~,r) has the form 

(4.6) 

++[I+&(++& -&)PlnP]P-gp +&)~+w 
f,(q, 4 ‘, - i/rS’ i- ‘IaS + a5/ar - ‘I&- l /ar + l/a (S + 1)’ (S- 2) ln (fi +3-l) 

6. Seoond and third rpproximrtioar for inner exprn:!on , It is 
evident from Eq. (4.6) that logarithmic as well as algebraic singularities appear in the 

second approximation for the outer expansion. The splitting of the singularities occurs 

also in the hydrodynamic problem of flow past the body. Each singularity generates a 
corresponding term in the inner expansion. It turns out to be possible to determine at 
once the next two approximations for the inner expansion. It will be evident below that 

the splitting of singularities is perpetuated in subsequent steps of the solution. Transform- 
ing (4.6) to inner variables, we determine the coefficient 01s (P) of the inner expansion 
(1.4), obtaining a2 (P) = P21nP (5.1) 

From (1.1) and (1.3) we find that the function Es (r, p) satisfies the Laplace equation 
with homogeneous boundary conditions 

A& = 0, r = 1, a& f ar = kt, 

The general solution of the problem (5.2) has the form 

(5.2) 

n+i+k p+l 

The constants a,are determined by matching ES8 (r, p) as r --f oowith E*(*I (p, IL) 
as p --t 0. We find 

a0 = - Vaq, -a,=0 (n>i) 
Thus 

’ Ee = ‘/g7 W’ - 1) 
As follows from (4.6), the third approximation for the inner expansion should be of 

order cc, (P) = P2 (5.4) 
The function Et (r, II) satisfies the equation 
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Z,(r) = - 

The boundary condition is 
r= 1, %a / ar = ki$, (5.6 1 

The general solution of Eq. (5.5) has the form 

&I (4 E 0, n>3 (5.7) 

By virtue of the boundary condition (5.6) the constants a,and b, are connected by the 
linear relationship 

(~-k)~n+%;,n(~)-~%s,n(~)=(n+l+k)b, (5.8) 

To determine a, amd &it is necessary to carry out the matching of the inner and outer 
asymptotic expansions. For this we transform (5.7) to outer variables. Taking account 
of(1.4),(4.1),(5.1).(5.3),(5.4),(5.71and(5.8),weobtain 

E&j = q E UnP”Pn (P) Pn+r + Q [p-r - ‘/a + .$ + (Vr+%P) PI(P) f%sP&X 
n-3 

x (P)]P +g[*- ~+dg+t(q+4~)P1(P)-~~+~)PldtPjJX 

XI=+ +%P$O(PS) (5.9) 

It is evident from (5.9) that the inner expansion & matches to terms of order Pa with 
the outer expansion ‘g*(P) determined by Eqs. (1.5). (3.1). (3.4) and (4.3) if the constants 
a, are 

a0 = 5 fzrl St* Ql = - l/4, a, = 0 Paz) (5.10) 

We find the constants &by using the relations (5.7), (5.8) and (5. lo), and obtain 

b - -(rk++&* ’ + &+&+2) 0- t40 k+i 

b,= 16 7 +-i&(1+-+%&~ (k+i;(k+Z) k+2 

b 

b, = 0 @>,3) (5.11) 



228 lu. P. Gupalo and Iu. S. Rfazamsev 

The function % s (r, cl> is completely determined by Eqs, (5.7). (5.10) and ( 5.11). 

6, Approxlmrttont bf highat mdar. 1t follows from(5.9) that 

CC(~) = P31nP (6.1) 

Substituting the series (1.5) into the relation (1.7), and considering Eqs. (2.1) and (6.1). 
leads to the conclusion that the unknown function %(s) (p, p} satisfies the same equa- 
tion and boundary condition as the function %(I) (p, p).These functions consequently 
agree to within a multiplier, whose value is found by matching %*(sj (p, FL) with (5.9). 
Using Eq. (3.4). we find after matching 

E;(3) = 4’. e’/.P(E”-1’ 
zp 

16.2) 

From (6.1) and (6.2) it follows that 
ap = PlnP (6.3) 

After substituting the series (1,4) into (1. I) and (1.3), with regard to (1.6), we obtain 
the equation and boundary condition for *%* 

(6.4) 

r = 1, a%, i a- = k%4 (6.5) 

Equation (6.4) differs from (3.6) merely in the multiplier on the right-hand side, and 
the boundary conditions (6.5) and (3.7) agree. Hence using (3.8) and (3.9). we fiid for 

%1 

The constants a, are determined by matching the expansions for. gez and’ %*t3). Trans- 
forming (6.6) to outer variables, we obtain after matching 

U, = - V4qa, an = 0 (nisi) (6.7) 

It is evident from what is set forth above that the determination of the third approxi- 
mation for the function %* (p, p) and the fourth for %* (r’, p) does not involve ted& 
calculation. thanks to the appearance of a logarithmic singularity. Obviously the search 
for ap~o~matio~ of still higher order will be associated with volumino~ ~mpu~tiom, 
In addjtion. the problem is complicated by the necessity of first determining higher terms 
in the inner and outer asymptotic expansions for the stream function, which represents 
an independent problem. We limit ourselves here merely to pointing out that, as follows 
from (1.6). (1.7), (5.9), (6.2), (6.3) and (6.6), the next approximations for %* (p, p) 
and %* (r, p) must have the order 

&f (P) = c&s (P) = P (6.8) 

Furthermore, as is evident from (6.2) and (6.6). the function Er, (r, ~6) will contain terms 
of the form e/so yqS-Zlnr, which leads to complete matching of %,, (r, p) with 

%*[a) (P, 111). 
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7. Coacsntrrtion (tcrmpsrrtute) field, BXux of mrtrrfrl (heat) 
4t surface of prrticis. Summarizing the results obtained above, we write the 
expression for the distribution of concentration {or temperature) in the stream flowing 
past a sphere. 

Far from the sphere (the outer asymptotic expansion) we have 

4 t*=-;;-e ‘/*P(Pl) * p + 
t 

+- P3 lo P) $ E@)PZ + 0 ( P3) (7.1) 

Here the function @* = Eta) (p, @) is given by Eq, (4.6). Near the sphere (the inner 
asymptotic expansion} we have 

f-I@= %s, n and b, are given by Eqs. ($11). We 
note that in the special case k + 00. if? -+ 00 
(5 -+ 0) the expressions (‘I, 1) and (7.2) agree with 
those obtained in 15). 

The heat (or mass) exchange with the medium 
is usually characterized by the Nusselt number N 
Taking the diameter of the particle as character- 
istic length, we have for the Nnsselt number 

N = -$+_r, 

After integration we find 

(5.3) 

N = 2q + 4% (P + P2lnP + X/,qP%lP) + 

Q (q, S) = ‘/‘& - “%oq + %,a + r - 3ha (2 - q)-‘+ 

-j- l&as= - f&S - 11% (S + if” (S - 2) In (I + 4.F) 

The results obtained indicate a significant dependence of the total flux of matter (or 
heat) at the surface of the particle upon the Reynolds number. Fig.2 shows the relative 
increment in Nusselt number AN = # (S, P) N-l (00, P) - 1 .for finite R with 
p = 1 and-various values of 5’ and P. It is evident, for example, that for S < 0.7 
and P > 1 this increment exceeds lo%, The effect of reaction speed on Nusselt num- 
ber is shown in Fig. 3 for 8 = 1 and various Reynolds numbers. 

In conclusion we note that the results obtained above are valid for any reaction speed 
at the surface of the particle (any value of q in the range 0 < q sg 1) and any value 
of the Schmidt number S that is not small (the case.S e-i being of little practical 
interest). It is evident that the method of matched asymptotic expansions does not per- 
mit establishing admissible upper limits OR the P&et number. This question can be 
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solved only by comparison with experiment. 

Fig. 3 
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